NASA-TM-108126

My

. = ()’DDI@/—?"D

NG~ T

(NASA-TM-108126) TOWARDS A GENERAL N?3-70826 ?
JRIECT-NRTENTED Ada LIFECYCLE ’Q
(NASA) 10 p Uncl s

Abstract

fa Qhw softwure eagioeeriag, the
wftmdcwbpumnbuodcluddahm

software design and Implementatioa. However, we

have also found thet object-orieated €oncepts can be
used sdvanaageously troughout the eatire Ads

software Life-cycle. This PUper provides & distillation of
Our experiences with ob ~ocieated s0(iwace

Iatroductiog

ThGodduuSmﬂ'uMCumSo(m«
Eagiu«i.uhbotmhmmhvdmhuaa
(ﬂ)vi!xvnjoahmcmohbou(50,000
i — mcnkahumvidedm

Ada is & trademack of the US Governmen((Ads Jaing
Program Office).

/61 0136169

Greenbeit MD 20771
March, 1987

designed the system 1o meet this specification, using

object-orisated priaciples. The retulting design is, we

studied duriag the pilo project <34 However, we heve
found that object-oriented €0BCepts can be used
sdvantageouwsly throughout the eatice Adas soltware life-
cycle. This paper provides o distillation of oyr

From ea object-ocieated
K seems appropriace 00 lastead 2

specificetion effoct by ideatifying the eatities in [

problem domain sad their hum_udoashion. Eatity-

i sioni
“coatextual® sad ’!’uaftm' F views of the Composite
wladookodd.

Almﬁgkaiodividul item of interest ia the
i euno}e.midctm

orbit state, have coctain thrusters, etc. Eatities cua aiso
hwumihmﬂ,umumceaunm which are
eflectively simple ¢elationships with standard data
itema,

The (ollowing is an exampie of the possible
relationships into which “toacecraft entities* might

1

L L1 Ll

VB T

SPACECRAFT
Parsmeters SPACECRAFT PARAMETERS
State ORBIT STATE
Thrusters (THRUSTER)
Computer ON-BOARD COMPUTER

ORAIT STATE
Position (NERTIAL YECTOR
Velocity (NERTIAL VECTOR

THRUSTER
Parameters THRUSTER PARAMETERS
Firing BOOLEAN

QN-BOARD COMPIITER
Uses { OBC DATA YALUE)

This indicates, for instaace, that the "state’ ol &
spacecraft is an “orbit state” which has & "potitioa” snd
4 *velocity’. Curly brackets indicate a relationship wich
2210 or mare® of the bracketed entity.

The eatity-celationship diagram (ERD) isa
commoan graphical too! (or eatity-oriented specification.
Figure { shows sa ERD for the sbave eatities. The
aoutioa for this disgram is {rom Martia eod McClure 14
This disgrum shows only a small pact of the example
problem domaia, It would grow as sddicional eatities
1ad relationships are sdded to describe additional
paru of the problem domaia, As the specificatioa
grows, a complete ERD can quickiy become
cumbersome. Therefore s textual “eatity dictionary”
seems (0 be most useful as the primary eatity
specification, with ERD notatioa being & graphical way
10 map parts of it

jeraccaary
THAUSTERS couruTER
STATE
onar o 8GARD
THAUETER sTaTy COMPUTIR
rosmou Loy |
/L
—nTiaL oec
vecTon oava ren
LEAOD
oy]

OMEC-WTH-ONE =t

CHE-WITH-MANY e

—

-

FIGURE 1 Orbit Simulator Entlty-Relatlonahip
. Olagram

The goels of system specificatioa are sctually
quite timilar 10 the goals of knowledge represeatation
work in ectificial intelligance. Therefoce it is aot
surprising that there ere similarities in techniques,
Entity-celationship diunrﬂ are basically the same &3
semantic networks” in AL" and the :ﬁtity dictionary is
similac to the Al concept of & ‘{rame”.’’ These and
ocher Al knowiledge representation techniques may be
increasingly spplicable for complicated system
tpecificatioa. This also suggests the intriguing
possibility of developing u sophisticated “specif
assistanc system which directly "understands” entity
relatioaship specifications.

ERDs show slf ppssjble relatioaships between
differeat types of entities. They do ot show the ggiual
relationships between specific eatities &t specific points
in time, nor how these sctual relatioaships chaage over
time. Data flow techniques, however, provide exactly
this dyaamic view. Traditional dats Mlow disgrams
(DEDs) show the flow of data between (unctional
processes. We will, instead, diagram the {low of data
between ghiecis which represent tpecific parts of the
problem domaia. This results in gbicct data-(low
diggrams (ODDs) for the dynamic view of the
specification.

For the specification phase, objects are not
meaat 10 be software modules, but to represent the

*~ dynamic view of 086 of more eacities in the problem

‘.

domuin. A specificatioa abject it effectively a state
mschioe which eccepu input data, processes it and
produces output da, possibly modifying some internsl
state data. It has 0o "operations” &s such, oaly data
(lowing ia and out. [a thjs ways ODDs are similar 0
Buhe's “cloud diagrams®,’ though ODDs ace oricated
towurds specificatioa rather than design.

To coastruct an QDD specification, ane aceds 10
ideatify the main eatities involved in dynamic processes.
Ia the case of the ocbit simulator example, the function
is 10 update the spacecraft state i response o
environmeatal focces and thruster firings uadec control
of the oa-boerd computer. We thus specifly a
DYNAMICS cbject to represent the physics of motioa of
the spececraft, s THRUSTER SIMULATOR object to
represent the (iring of thrusters and aa OBC

"EMULATOR abject 10 emulate the operetion of the on-
board computer.

Figure 2 shows the deca {low between these
thees objects. Note that each datum (lowiag on an ODD
is icself an enticy. The encity dictionary can thus
completely replace the traditional dats dictionary.
Some of these entities, such es "thruster status® and
“08BC telemetry”, msy Ily aot be identified until the
dyasmic view is considered. Thus the entity dictionary
will most likely continue 0 grow and be refined as the
ODD specification it coastructed.

Aa ODD specification must include a detailed
specification (or esch object which appears on sn ODD.
A object specification provides & statemeTEAl the
problem domaia abitcaction represented by an abject.
1t shoutd include & textual description of the abject as
well as ¢ listing of all inputs and outputs. The object
specification also pravides & place to include “non-

-.- I' 1

should Jo Tn terms of the problem domain. The main
task of design is then to impose & control structure on
the 1ystem function to sllow software implementttion.
R ? la object-oriented design the unit of modulacity is the
CARTH TenueTIn vyt object, this time considered in the usual sense 15-
oaen ebacLonary packages of data and ooeauo_n: on that daa. 4.
[deally, the objects in the design should dicectly reflect
the objects in the specification. However, various
B) 1 COMMAND design considerutions may require certain specification
ovRamcs| ¢———o |neweran} 0 objects to be grouped together or split apart o
THAUSTIR fuviaTOA 0 coastruct design abjects. Fu_ﬂher. umre will almost
slways be additional objects in the desiga to haadle
sTATVE f *executive” and “utility® functions.

oy oac

ATt TELEMETRY Designing with Obiects

' }
v The intent of an object is 10 represent & problem
domain entity. The concept of ghstraction deals with
LEQEND how sa ?br‘fc‘ presents this cepresentacioa (0 other
objects, During specification we desal with objecu
ocesmcr O with high abstraction, close to the problem domain. In
design, however, there is ¢ spectrum of abstraction,
[rom objects which closely model problem domain
entities to %biccu which really have no reason for
existence, The following are tome points in this
scale, from best 1o wont

OAYA MLOW O—o

FIGURE 2 Orbit Simuietor Object Data-tiow Eqtity Abstracrion - An object represents & useful model
Olagram of & problem domain entity.

Acting Ahstraction - An object provides a generalized
set of operations which all perform the same kind of
functional® requirements such as timing and accuracy function.
coastraints.
- Aa object groups together
operttions which are all used by some supecior level of

The object specification must also decail the coatrol oc all use some junior level set of operations.

{unction of the object. This could be ia the (orm of

structured ish, & etate transitioa di .. .
her m I‘ p w:."“‘::' tome . ® - A object packages a set of
«u‘b“wa';;' m““m“nluadoa"‘ of aa “orbit m"'(.e‘ The - operstioas which have no relation €0 each ocher,

{unction of an object can also be given by & lower level

ODD. Decompositioa can coatinue recursively a all The steongee the abstractioa of ea object, the more .

ODDs uatil all obj have beea decom { jate details are suppressed by the abstract coacept.
primitive processes sad staces. This retults in a The priaciple of mmn‘h‘m" #rates thae ﬂch
leveling of ODDs similar w0 the leveliag of traditional details should be kept secret rm. objec "
DFDs. However, ualike DFDx, esch object at esch level 0w better preserve the abstractioa modeled by the
of aa QDD specification has & complete object object.

specificatioa. Each ho .

g00d p.::bkm do m‘i:b:::‘ s :‘: id”I N:?::;;‘o(i i The principles of sbstractioa tnd iaforaation

hiding provide the main guides for creating “good”
objects. These objects must then be connected
together to (orm an object-oriented design. ln contrast

0 the dacs (Tow, 3,}1"“'“ of ODDs, our ahiect diagaam

decompatitioa.

Aa ODD is a specificatioa ool showing daaa flow
rather than software coatrol structucing. However,

coatrol issues sctual . design nouuoo shows coatrol Mow snd module
whea cwluugnwg.t‘:::m: :323 depeadencies between abjects. This software structure
circles oa their tails indictte tignals from one object to must, however, preserve the specified functions and
soather, An ODO specification should include the faecetsary data (low, though the actusl data flow paths
miaimum such “coatrol flow” absalutely aecessary to may be altered.
specify a system. With this added notation, ODDs are
effectively the same ag the (umr&omed) process : . .
graphs” used in PAMELA (1m). Draien Hicrarchies
Desl —— B The traatition from ODD specilication to object =
- 7 disgrams is mediated by consideration of two
am orthogaonal hierarchies ia soliware 1ystem designs. —_——

A tysem speci H i
th ilication describes what s system The comoatition hierarchy deals with the compasition

of larger objects (rom smaller component objects. The
Ieniority hierarchy deals with the organization of s set

PAMELA is & trademark of George W. Cherry.

[Op—] [u—]

—i

Y

4

COUPONTL.

a5

FIGURE 3 Compesitien Hiersechy

of objects iato "layers”. Esch layer defines 8 !‘mﬂl
machine which provides services 0 seqior layers." A
major streagth of object disgraas is that they can
distinctly represeat thess hierarchies.

The moaido.hkruchyhdincdyumcd
Wknﬁnlcb}oadhcnu(mﬁcml).dnihrn&l
lcwliuofODDl.MhbpMuyoomokumun
wmay be represanted by s single abject which interacts
withummnjm.acﬁumumhmtmm
uchobjo«mmubcnﬁudhwmm(obj«a
oa ¢ lower level object disgram, designed to meet the
wociﬁadoa(ormobica.mmuukuknhdmot
object diagrams which completely describe the
structure of & sysua. At the lowest level, objects are
completely decomposed iato primitive objects such as
procedures and iaternal state daca stoces. At higher
lwch.objead'n(unknliu?ﬂbcuedhlmnw
similar 10 Booch's “subtystems®,

The sealoricy hierarchy is expressed by the
wpology of coanectioas oa & single object diagrum
(see figure 4). As arrow betweea cbjects indicates that
one object calls ane or more of the operations provided
by another object. Aay layer iaa seniocity hieracchy
can call oa aay operstioa in juaior layers, but pever any
operatioa ia e senior layer. Thus, all cyclic
relationships between objects must be contained withia
8 virtusl machioe layer. Object diagrams are drawa
with the seaiority hiersrchy thows vertically, Each
seaior object can ba desigaed as il the operat

© provided by jusior fayers were “primitive apecstions” in

aa extended language. Each virtusl machine layer will
geaeruily coatain severa! dbjects, each designed a
accarding o the principles of abstraction and
ialormation hiding.

WTERAFACK ¢

VIRTUAL
MACHNE
(TERFACE T

FIGURE 4 Senlority Hiersrchy

Designing S

The main adveauage of ¢ segiority hiecrarchy i
that it reduces the coupling between objects. This is
because sil objects ia one virtual machine layer seed (0
know nothing about senioc layers. Further, the B
ceatralization of the procedurel end dsta (low coatrol in
seaioc objects can make ¢ system catiar 0 understand
and modify.

However, this very centruliration caa cause 8
messy bottleneck. 1n such cases, the complexity of
ouiorhwhmbctmdedo(futinstdweowﬂuo(
juoaloc lavels. The importuaat poiat is that the strength of
the seniocity hierarchy ia & datiga caa be choses from &
gnectrum of postibilities, with the best desiga generelly
lying between the extremes. This gives the desigher
great powaer and (lexibility ia adaptiag system designs
10 specific spplications.

Figure $ showt ane pontible desiga foc the
ORBIT SIMULATOR. Note that, by conventioa, the
acrow labeled "RUN® is the initial invocation of the entire
tystem. la traasitional desiga disgrams such as figure
S, it it sometimes coavenicat 10 show what dsua flows
slong ceruin copjrol arrows, much ia the manaer of
structure charts®? oc *Buhr charts™’. These annotations
will a0t 2p00cac oa the (inal object disgrams.

{a figure S, the juaior level components do not
iateract dicectly. All data flow betwsen junior level
objects must pass through the sefiior object, though I
each abject still receives and produces sil 1pecilied -

== = data (folimplicity not ell daca flow i thowa in (iguce 5).
— This design is somewhat like aa object-oriented version

of the umcuﬁgd detigns of Yourdon snd
Coastantine.

DYHAMICS

ORe(T

LEQEND
seaer (]
OATA LOW O—b

CONTROL ALOW ————pe

FIGURE & Ocrblt Simulater — Centralized Design

AL TY
[St

e)

SAYA LOW O—o
CONTAOL ALOW ——p

FIGURE-€ Orbit Similetar with Decentralized

Data Flow

B ULAT O oo

THRUITIN
THAUSTER COMALAMD
rORCE]
nRUTIRLe oec
ovmamics| a0 Lo CRIATOR
e
oTaTUS
oner
STATE osC
TOLEMCTRY
QROB
LEGEN0 COMMAND I
ouner () .

OATA FLOW O—
CONTROL RLOW emardp

FIGURE 7 Ortbil Simuleter — ODecentrailzed Design

We caa reaiove the data {low control from the
senior object and let the junior objects pass data -
directly between themselves, uting operttions within
the virtual machine layer (see figure 6). The senior
object has beea reduced to simply activating various
operttions ia the virtusl machine layer, with very little
data flow, .

We caa evea remove the senior object
completely by distributing coatrol amoag the juaior level
objects (see figure 7). The splittiag of the RUN control
arrow ia figure 7 means that the three cbjects are
sctivated gimuitanequsly end that they rum cancurrentdy.
The seniority hierarchy has collapsed, legviag
homologous or non-hierarchical design“~ (no genjarity
hierarchy, that is; the composition hiersrchy still
remains).

A desiga which is deceacralized like figure 7 ac oil
compotition levels is very similar to what m%ba
produced by the PAMELA (tm) methadelogy.'” la fact,
it should be possible w0 apply PAMELA detign criteria
w0 the upper levels of an object diagram based design
of s highly concurreat system. All concurrent objects
would then be compased, at ¢ cectain Jevel, of objects
representing certsia process *idioms®.'V Below this
level concurrency would genersily no longer be
advantageous,

The entity-relationship model pravides a basis for
the deta flowing on aa ODD. Not all these entities are
represeated by specification objects, buc they are
genecally at (00 high & level of absiraction to be dicectly
regreseated by basic data ttructuces. Therefore we
aeed 10 add & virtual machine tayer of abjects to
provide abstract-da types which preserve the
sbsiraction of these problem domain entities. In the
csase of the ORBIT SIMULATOR these data types might
include VECTOR, MATRIX, GROUND COMMAND 1ad
simulatioa PARAMETER types. Figure § shows how
these objects might be added o the simulatoe design of
Figure 6,

-

- ey >~

[}

’“ﬁr—'ﬂr‘ﬂlr"ﬂﬁhrﬂr"ﬂr“lr‘ﬁ*‘ﬁﬂr“-‘ﬁ

I

r=—

Dett in parentheses are arguments which (low giong
the control arrows, while unpsrenthesized data sre
results which are returned.

For objects with specifications snd lower level
ODDs, we can recurtively construct lower level object
disgrams. These lower leve! designs must, however,

[both meet the functionslity of the specification and
uLaTon provide the operations listed in the object description.
(ORL? Some design objects, however, will not have object
specifications. Absiract data type objocts can have
their design besed on the structure of the entities they
represent. For "executive® objects like SIMULATION
SCHEDULER it may be worth creating a specification {or
it befoce proceeding with design as above. In all cases,
the design process continues recursively uatil the entire

p—Lj speci{ication has been covered by the design and sll
ovu:mci m:rru - o‘oc objects are completely decomposed.
pasuiaTon EMURATOR
Implementation

The transition from an object disgram (0 Ada is
straightforward. The retationship between object
disgram notations und Ada language features ir:

QObiect Disgram Ada Construct
‘L“\ Y Object Package
PARAMCTER Py Procedure Subprogrum]
DATABASE COMMAID Suate Package/task variables
HANGLAR Arrow Subprogrum/entry call
Actor . Eatries/Accepy (not
FIGURE 8 Ocbit Simulatar Deaign covered in this paper)

Package 1pecifications are derived (rom the fist
of operations provided by an object. For the

Figure § gives one complete level of the design DYNAMICS object from the last sectioa the package
9(the ORBIT SIMULATOR. Note that figure § does 6ot specification i
inciude the daws (low arrows used ia earlier figures.)
Whea there are severnl coatrol paths oa & complicated package Dynamics (s
abject disgrum, it rupidly becomes cumbersome to
show daa flows. lastead, pbicct descrintions for esch type ORBIT_STATE I
object on a diagram provide details of the date flow. record :
Positioa : Linear_Algebra. VECTOR;
Aa object description includes a fist of all Velocity : Linear_Algebra. VECTOR;
operations provides by sa abject aad, for each arrow ead record;
leaving the object, & list of operttions uted from ieiali
unother object. We caa ideatify the opecations ’"’“:“" ::::“‘:(‘
provided end used by each object ia terms of procedure ntegrace
tpecified dara (low ead the desigaed coatot low, The (For_Durttion : la DURATION)
abject description can be produced by matching data procedure Apply_Thrust
flows 10 operttions. For example, the descriptioa foe - (Force:la Linear_Algebra VECTOR);
the DYNAMICS object might be: - f{uactioa Curcent_State
returs ORBIT_STATE;
Provider
Inicialize () ead Dynamics;
lategrate (TIME INTERVAL) o)
Apply Theust (THRUSTER FORCE) The packsge specifications derived (rom the w00
Current State () ORBIT STATE tovel cbject diagram can either be made libeary units or
plsced in the doclarative part of the top level Ada
Usex proceduce. For lower level object disgrams the
5.0 LINEAR ALGEBRA mapping Is similar, with component package
VYector Add specifications being nested in the package body of the
Dot Product composite object. States ace mapped into packsge
Scalar Multiply body variables. This direct mapping produces & highly
Matriz Multiply nested program steucture. Alternatively, some or all of
e - . these packages can be made library unitg or even ——
6.0 PARAMETER DATABASE a reused (rom aa existing library. However, this may
Get Dynamics Pacameten - JeQuire gdditiongl packages 1o coatsin data types and

state variables used by 1wo or moare libeary units.

-

The process of transforming object disgrams w
Ads is followed down ulf the cbject disgram levels uacil
we reach the level of implementiag individual
subprograms. Low-level subprograms can be
designed and mplemented using (ruditional functional
techaiq They shouid gemerally be coded as
subuaits, Facher than beiag embedded in package
bodies.

The clear definition of sbstract interfaces ia aa
object-orieated desiga can aiso gready simplify testing.
Whea testing an objecy, there is & well delined “virtual
machioe’ of operatioas it requires from objectsata
jugior leve! of abstrection, some of which may be
$tubbed-out for inicial testing. Further, object-orieated
composition encourages incremental iategratioa
lesting, since the "ugit testing® of s composite object
really coasists of “integaation testing® the component
objects at & lower level of sbstraction.

Reusability

Software reusability is one of the major drivers
{or the development of the Ads programming language.
Ada features such as generic packages are useful
1001, but language (eatuces are oot sufficieat ©
guaraatee high levels of soltware reuse. What is slso
oeeded is an goprogch w specifying aad designing
reusable compoaeats. This sectioa shows how our
method supports such aa spproach, and siso presents
1a example of how generic program uaits caa be used
in the coatext of the method. . _

Software reusabilicy is still more of ¢ research
t0pic than part of staadard peactice in the Cield. This
sectioa will discuss throe coacepts that support & high
level of reuse. They are o use an objoct-oricated
womach.wmthcpnducao(nulitccyckphua.
184 0 provide documentatioa that is bock useCul and
maigtaicable. This it by 80 means & comolete list of
relevant facton, but our experieaces in developing Night
dyaamics soltware have provea their utiliry,

Obiect-0ri

Usiag &8 object-ocieated approach is useful not
object-oricated design is este ial for reuse,
but because the uoderlyiag coacepts sre. The coamon

elements that are imporuat are:

»

-~ Dut ebstraction sad information hidiag
«= Levels of virtual machines
-~ loheritnce

Parnas20 discusses the importaace of the
abstraction, informatioa hiding, and virtual machine
(evc_lt ia makiag software easier to reuse. Cox shows
the imporuace of inheritance by comparing the size of
the Smalltalk eaviroament (40,000 lines) snd the
Berkeley Unix eavironmeat (400,000 tines), where the
fourmereaviroament relied heavily oa inheritance to
promote reusability. .) '

- ATa canno(support inheritance as easily as
Smalltalk, byt can simulate it through the use of the
co«!oou'(ioa hierrechy. We will continue the sample
orbit problem ta show the simulation of inheritaace and
to show how Ada generics can be uted in the coatext of
abject-ariented desiga.

In the object diagram (or the orbit simulatioa
system (figure 8) the object LINEAR ALGEBRA is a(the
lowest virtual machine level. [t provides an extended
language thac aliows the developers of objects such as
DYNAMICS to write code in terms of linesr slgebea
operations, rather than in terms of acrays and loops. A
aoa-generic Ada library peckage can serve this
Purpote, but implementiag a generic provides the
sdvenuge of controlling (losting poiat accuracy,

Agother reason (o make & package generic is 1o
oase the simulation of inhecitance. We will demonstrace
this by building the Dynamics package sround o
geaeric aumeric integrutor with the following
specification
generic

(ype REAL (s diglts ©;
type STATE_VECTOR ¢
acray (INTEGER range o) of REAL:
with fuaction State_Derivative
(T:DURATION; -- from reference time
X : STATE_VECTOR)
returs STATE_VECTOR;

package Generic__[ntegracor Iy
.-

procedure Integrate

(For_Duration : fa DURATION);
fuactioa Curreat_Sute

cetura STATE_VECTOR;
procedure Inicinlize ...

«ad Geaeric_Integrutor;

This package provides the nbl’lity to aumerically
iategrate & vector differeatial equation with an arbitrary
fute vectoe size. The lategrate procedure can be
implemeated as ¢ vector equation; or us a set of
iodividua! real-valued functi To impl HETY
single vector equation we will need the opecretions
provided by package Linear_Algebea. These
operttions caa be incorporated ia twa ways, One
possibility is 10 make the operstioas needed into

- geoeric formal parameters. Another is (o i iate

Liaear_Algebra within the integrator itself, Esch
method has edvaatages and drawbscks. Using generic
focmal subprograms enhaaces ceusallility by making
the component self -contained, buc if 100 many are
Boeded the interface becomes complex. lasaatiating
Ligear_ Algebea within the Geaeric__lntegrator makes &
cledner interface, but couples the generic package o
eaother libeary unit. The pilot project team has used
both mecthods. Figure 9 shows how the object
lategrator_Linear_Algebrs is the instantiation of a
generic psckage.

Figure 10 shows the composition of the
DYNAMICS object. Orbit_Integrator is the instartistion
of the genecic package discussed above. The generic
package it instantiated with Ocbit_Equation as the -—
actual paramet®r corresponding to the formal
parumeter (unction Scate__Derivative. The operations
“Initislize” and "Apply Thruse” are shown in figure 10 as
companent procedures, represented by rectangles.

The other Dynamics operations are "Current State™ and
“Integrate.” These operations are inherited from the
Orcbic_lategratar object.

i

#l

P PR

- ATL [™24) CURRENT
con e STATE
PR Y
’ .
STEGAATO eTATX STEQRATON
LHEAR ‘oERIVATIVE | TaATS
ALGEBRA fenosowed —
DD

3

]

9
O

CONTROL MLOW &
aHmC
HMETAKTIATION
FIGURE ¢ Generic Integretor
2.0 1.2
wTALIZE APPLY
THAUST
1.3
OnefY L]
HTEGRATOA
N
.
.
1.4
onerr
€QUATIONS
y
1.8
[CURROT
ACCCLERATION
—
T
= FIGURE 10 DOynaemics -

Saailtalk’s :ubchning” provides an elegant
meant of suppocting inheritance. Ada does not directly
support inheritance, but the cancept can be simulated
by using “cali-throughs.® A call-through is s
subprogram that has little function other than to call on
another psckage's subprogram.

To simulate inheritance wheat implementing the
Dyaamics package the subprograms Iategrate and
Current_State would be respecified in the Dynamics
package, with the subprogram bodies in Dynamics
calling on the correspondiag operutions in
Ocbit_lntegrator. The call-through for Current_State
would siso have to take care of coaverting the lower-
Jevel data type STATE_VECTOR" returned by the
lategrator to the higher-level type *ORBIT_STATE".

This techaique is clearly less elegant than
Smalltalk subclassing, but it also has sdvaatages.
First, Ada sllows inheriance (rom more thao one object.
Secondly, Smaliulk {orces the iaheritance of nll
operations snd data. An operation can be overridden,
but not removed, from u class. The Ade specification of
the composite peckage gives the developer precise
coatrol over which operations and dawa items are visible
or sccessible. In the Dyoamics ¢rample the operations
*Iategrate” sad *Current_State” are iaherited by
Dynsmics, but “{nitialize” is oot.

Reuse Acroas the Life-Cycle

Reuse scross the lili%cyclc i1 a concept
promated ia both retearch '’ and production
eaviroaments. Toshiba claims that the life cycle
spprosch used ia theic tgf tware {actocy yields 85
percent soltware reusa ~. The key i Toshiba's model
is that the life cycle is represeated as ¢ series of
(ransformations from & user aeed 0 the (inal product,
thus presecving traceability. The final software is made
mare generel (and thus reusabie), then the specification
is rewrittea into & “presentation” that is consistent with
the generalized code. These presentations are used
when new system requirements are being developed.

Ouc method caa be used 10 support 8 model
quch as Toshiba's, because objects can be traced (rom
the ODDs to object disgrams to Ada code. Toshiba’s
concepts need to be refined 50 thats single
requirement {eg., “integrate orbit squation”) can be
mapped into several implemeatstions (eg., dif{erent
aumerical iategration algocithms). Another drawback of
the Toshiba model is that it is aot designed o handle s
wide variety of problem domains. We address this by
leaving room foc application-dependent notatioas in the
object specification, and by providing the two
orthogonal design hicrarchies.

The soecification sad design documents must be
mainuined sloag with the code. These documents
provide the traceability that it needed (or sofiware
ceuse. Our pilot project team has found that the volume
of documentation generated makes it haed to keep the
design notebook consistent with the source code.
_Adding a specification notebook will compound this
peoblem. The solution is to mainain as much
infocmation as possible on & computer, and 0 extend
the use of configuration conteol soltware 10 the
specification and design.

Another factoc ia reuting softwece is bow the
documentation should be #ccessed by developery

kaowledge represenutions ncoureges the belief that
€xpert systems may ultimately play ¢ role, However,

' more coaveational library tools have the sdveatage of
a0t being tied to the development method used.
ln(erme‘rics has been doing reseacch into such
iystems® by developing ¢ Prototype Ada Softwere
Catalog (ASCAT).

Coaclusiog

The techniques described in this paper have
evalved (rom our experience with two Ads projects and

Systems will be used in actual operttional
eavironments, allowing us to study their reliability and
w@aigteinability.

The tnditional [unctioaal viewpoiat provides e
comoprehensive framewark for the eatire softwace {ife-
cycle, it viewpoiat refleces che sctioa-oriented natyre
of the machines gg which software is rya. As we have
discussed here, the object-oriented Lpproach can also
provide o Comprehentive view of the life—cycle. The
object-ariented viewpoiat, bowever, reflocts the eaturad
Stricture of the problem domaia ragher thaa the implicic
$uructure of our hardware, Thut, it provides a “higher~
level approach 1o software development which
decreases the diseace betweea problem domaein aad
so{tware solution. By making complex soltwere easier
0 uaderstand, this timplifies both the 1ystem
development and maiatenance. This is the goal of our
§etenal object-orieated Ade lile-cycle,

Beferences

L. Agresti, Williaq W."Aa Approach to Develaping
Specification Measures ® i
i i GSFC‘Documeul SEL-

84-004, November 19¢4.

2. Agresti, Williem W, et ol “Designing with Adg for
Saceflice Simulation: g Case Study,* i

Soace Station, June 1986,

3. Basili, v, R, et. al. “Characterization of an Ada
Softwure Development,* September 1985,

4. Booch, Grady, M%
Benj-min/Cumminu. 1983,

5. Booch, Geady. “Object~Oricated Sof tware
Dev'doomem" i w
i Febeugey 1946 -

6. Booch, Grady. Sﬂmﬁn% -
Beujumin/cuumlnu. 19413, }

7. Buhe, R, J. A, Snmn:mu,n,m Prentice-Hall,
1984,

§. Burton, Bruce sod Michea! Broido. "Develapment of
4a Ada Package Libeacy”, i

Soace Station, June 1986,

9. Chea, P. "i'he Eatity-Relationship Model -- Toward a
Unified View of Dewa,* i
Syitems, March 1976,

10. Cherry, George W. mmmuﬁumm
‘n\ou(h(“Toou, 1986,

11. Cox, Brad. “Message Object Programmiag: An
Evolutionary Change ia Progremming Technology *
wirt. Janusey 1984,

12. Dijkstra, Edsgar W. "The Structure of the “THE®
Multiprogramming System,” icati

ACM, May 1968,

13. Goldberg, Adele and David Robsoa. B {
ion. Addison-Wesley,

1981,

14. Martin, James and Carma McClure. Diagramming

< . Prencice-
Hall, 1985.

15. Mattumoto, Yoshihico. “Some Expecience in
Promoting Reussble Software: Presentation in Higher
Abstract Levels,* i

i ing., September 1984,

16. McKay, Charfes. Lecture to GSFC Ads Useny
Group. April, 1986,

17. Miasky, Macvia. "A Framewark for Representing
Knowledge,® in Vision, ed.
by P. Wiaston, McGraw-Hill, 1975,

18. Netson, Robert W, “NASA Ads Experiment --
Attitude Dynamic Simulator,” i

19. Parnas, Devid L, “On the Criteria 10 be Used in
Decomoosin(Systems iato Modules,* o T
of the ACM, December, 1972,

20. Parnas, Davigd L. “Designing Sof tware for Ease of
Expantion and Coatractioa,” i
w, i ing, March 1979,

21. Quillian, M. R. “Scmaatic Memory® in
f iag, ed. by M. Miasky, MIT Press,
1968.

22. Rajlich, Vaclay. “Pacadigms (or Design and
Imolementation in Ade,* Cﬂmmnmnunnummgu
July 1985,

A gy =y

23, Seidewitz, E4 nad Mike Stark, “Towards 4 Geaersl
Object=Orisated Soltware D:v_eloomea(Mathodology.*

Anolications {or the Soace Station, Juoe 1946.

24. Saeidewitz, Ed and Mike:Sllrk. Genenal Obiect-
3 GSFC Documeat SEL-
$6-002, August [986.

25. Yourdoa, Edward and Larry L. Consu‘n(i_nc‘

ign. Yourdoa
Press, 1978,

Ed Seldewitz works at tha NASA Goddard Space Flight
Ceater a3 a {light dynamics anslyst. He is also very
iavolved in the development of saalysis soltware, user
igterflace duign and applicatioas of Ads. He has
previously worked {a specs tystems engineering,
computer aided iascruction and artificial iatelligence. He
holds two B.S. degroes from the Massachusetts

lastitute of Techaology, cae ia Aerontutics and
Astroaautics 10d ooe in Computer Scieace aad
Eanginesring. He is u member of the American Institute
{or Aeronsutics and Astr ics and the A istioa of
Computing Machiaery.

Mike Stark works in the Systems Development Branch
at the NASA Goddard Spece Flight Center. He has
waorked on {light dynamics support software for the
ERBS ead COBE satellites and is curready iavolved ia
the implementatioa of an artitude dynamics simulator i
Ada. He hoids & B.A. degroe ia Mathematics aad
Ecoaomics from Oberlin College, sad is curready
working oa & Masters ia Computer Scieace in the Johns
Hopkins University Past Time Engineering Program.

